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SL( 3, R )  realisations and the damped harmonic oscillator 

JosC M Cerver6 and Javier Villarroel 
Departamento de Fisica Tebrica, Facultad d e  Ciencias, Salamanca, Spain 

Received 1 December 1983, in final form 1 March 1984 

Abstract. The point and contact Lie groups for the damped harmonic oscillator are found 
and several realisations of the SL(3, R )  Lie group are analysed. The non-critical and 
critical cases are studied separately and a sort of limiting procedure is defined, which leaves 
the Lie algebra structure unchanged. Some physical applications of these results are also 
pointed out. 

1. Introduction 

This paper deals with the complete determination of the group of transformations 
which leaves invariant the equations of motion and the action of the harmonic oscillator 
with a damping term. Previous work on the subject which should be mentioned includes 
a detailed analysis of the harmonic oscillator without friction (Wulfman and Wybourne 
1976, Lutzky 1978), the repulsive undamped oscillator (Leach 1980a) and the un- 
damped harmonic oscillator with variable frequency (Prince and Eliezer 1980, Leach 
1980b). All these previous cases deal only with point transformations. Contact 
symmetries for the undamped case were also recently considered (Schwarz 1983). 
Also, a method using mappings among differential equations through the Arnold 
transformation (Arnold 1983) was also developed (Martini and Kersten 1983) for the 
damped harmonic oscillator, but this method relies heavily on the knowledge of the 
solutions; something which we find unnecessary and cumbersome. Besides, nothing is 
said in the paper about the group structure; neither is reference made to the group 
leaving the action invariant: a fact which from our viewpoint has far reaching conse- 
quences, specially in the quantum domain, as we shall see later on. 

Therefore, we have adopted here the old Lie method (Lie 1894) for the equations 
of motion and Noether’s theorem for the conserved quantities (Noether 1918) for the 
action. The group structure is analysed throughout as well as the subgroups leaving 
the action invariant. A distinct difference is made between the over- (under-) damped 
cases on one hand and the critical case on the other hand. Consequently, § 2 is devoted 
to the point symmetry group leaving the equations of motion for the first (over- and 
under-damped) case. Section 3 deals with the same calculation for the second (critical) 
case. Section 4 contains the symmetry group of the action in both cases and several 
considerations are made in regard to the Hamiltonian, as well as the conserved 
quantities. Contact transformations for both cases are the subject of § 5, and a set of 
functions is given which allows us to recover the previously considered point transforma- 
tions. Finally, in 0 6 we give the necessary and sufficient conditions to obtain the 
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point-Lie group of the critical case as a limiting procedure from the non-critical 
generators: something which appears to be similar to the so-called group contraction 
although several crucial differences arise. We close with a few conclusions. 

2. Point symmetry group for the non-critical cases 

We shall be dealing with the one-dimensional mechanical system given by the 
Lagrangian 

3 = eb/mr($mx2-;mw8x2) (1) 

mx + bx + mw8x = 0. (2) 

YO = b/ mwo (3)  

T = W o f  (4) 

whose equations of motion are 

Since the dim[b] = MT-' we can form the dimensionless quantity 

and rescaling the time variable in a dimensionless way by putting 

we end up with a Lagrangian 

2 = {+mu;}  eY11'[(dx/d~)2- x2] 

and an equation of motion 

d2x/dr2+ yo dx/d.r+ x = 0. 

Also, we shall use the following quantity 

y=(y;-4)"2. (7 )  

The non-critical cases arise from y f 0 (real or pure imaginary). The critical case 
is y = 0 (yo = 2). Also, the harmonic oscillator limit is obtained for yo = 0 ( y  = 2i). 

The use of Lie theory in finding the group of transformations which leaves invariant 
a differential equation is well known (Lie 1894, Lutzky 1978) and we shall not give 
here the detailed steps. The result is a set of eight generators given by the following 
expressions 

G, = ( 2 / y ) [ s i n h ( y ~ ) r ? / i ) ~ + ( t y  cosh(yT)-$yo s i n h ( y ~ ) ) x d / 3 ~ ]  

G 2 =  (2 i /y) [cosh(y~)d/a~+($y  sinh(y7)-4yocosh(y.r))x3/ax] 

G3 = (2i /y)(e- '0~ '~ cosh(;yT)a/ax) G4 = (2/y)(e-'0''~ sinh($yT)a/ax) 
(8) 

G5 = (2i/y)(d/a7-tyox3/ax) G~ = xa/ax 

G 7 -  - -ieYoT/2 [x  sinh($yT)3/37+ ( t y  cosh(5y.r) -$yo sinh($yT)>x23/3x> 

GR = ey""*[x cosh(tyT)d/d7+ ( t y  sinh($y.r) -$yo cosh(+y~))x~d/dx] .  

Notice that time translation is in fact a generator belonging to the symmetry group 
of the equations of motion since 

3/87 = ( Y/2i)[G5 i( Yo/ Y )  G61= ( Y/ 2i) G5 $?'oG6 (9) 
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is a linear combination of G5 and G6. This will be proven to be not true for the group 
leaving the action invariant. The expressions (8) are written for y real (over-damped 
oscillator). However, for y pure imaginary we should take into account that sinh(ia) = 
i sin(a) and cosh(ia) =cos a and we shall obtain the other non-critical case (the 
under-damped oscillator). The commutation rules of (8) are 

and also 

A comparison with formulae (25) and (44) of Lutzky (1978) shows that this is also 
the Lie algebra of SL(3, R ) .  Taking the harmonic oscillator limit yo = 0, our generators 
reduce to the ones found by this author (m = 2, oo = 1) in their formulae (24) and 
(41)-( 43). 

3. Point symmetry group for the critical case 

In the case y = 0, and applying Lie theory, we find the following set of generators 
leaving the equation of motion invariant: 

c1 = a / a ~ - $ y ~ x a / a x  C2 = e-yor/2a/ax C, = e-y07/27a/ax 

c,= T 2 a / a T + ( i  -$yoT)Txa/ax 

c6 = xa/ax 

c,= eY~lT’2[Txa/aT+(l - $ y o ~ ) x 2 a / a ~ ] .  

C, = 2 ~ a / a ~ + ( i  - yoT)xa/ax 
(12) 

C, = eY0‘/2(xa/aT-$yox2a/ax) 

The alert reader will certainly notice that if y = 0 then yo = 2. However we can 
still leave yo as a free parameter and (12) remains a set of generators leaving invariant 
the equation for the critical case. They even close a Lie algebra for arbitrary yo!. The 
commutation rules are: 
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and also 

E c I 7  c6l=[cl, c7l=[c4, c6l=[c5, c6l=[c47 

[c27 G I  = CI 

[C37 G I  = tc c5 - 3 C,) 

[C2, C6l = c2 

[CI G I  = C7 [C,, G I =  t(CS + 3Ch) 

[C,, C h l  = c 3  [C,, Csl = -2c4 (14) 

[c3, c8i = c4 [c4, c7l=-c8 [C,, C7l= -c7 [C67 C7I = C7 

[c5, CBI= c8 [c6, c8i = CP. 

The time translation is also a symmetry as in the previous (non-critical) case. In fact 

a / a T  = c, + f y O c 6 .  

However, this will not be true for the group leaving the action invariant. Although 
the commutation rules (13)  and (14) look very different from the ones of (10) and 
(1 l),  the formal equivalence: 

G*GI Ch* Gh c,* G8 C8*G7 

reproduces (10) and (11) using (13)  and (14). Therefore the structure of the Lie 
algebra in the critical case is also the one of SL(3, R ) .  This result is highly non-trivial 
since we would expect in principle this structure to change from the fact that the 
C-generators can be obtained as a series expansion in y from the G-generators: a 
sort of group contraction. This is not, however, the case and this result will be carefully 
analysed in § 6. 

4. Point symmetry group for the action 

Let S be a definite infinitesimal generator leaving the action invariant. Then, the 
Killing equation must follow: 

(s ' )L+++(ag/aT)  =dA/dT= (a/aT+ia/ax)A(x, T )  (16) 

S =  ((x, T ) a / h +  T(X, T)a/ax (17) 

where S is of the form: 

and S' is defined as 

Applying this well known technique (Lutzky 1978) to our case, we find the following. 
(a) If y # 0, there a re  five generators leaving the action invariant. 
They are  exactly: GI ,  G2,  G3, G4 and G5 given in (8)  with commutation rules 

given by (10). The  correspondent conserved quantities a re  

II = e r ~ ' [ ( i 2 + x 2 )  sinh(yT)-xi(ycosh(yT)-yosinh(yr)) 

+ fx2(  y 2  sinh( y r )  - yyo c o s h ( y ~ ) ) ]  
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I 2  = eYor[( xz + x 2 )  cosh( y ~ )  - x x (  y sinh( y ~ )  - yo cosh( y ~ ) )  

+ ix2 (  y2  cosh( y ~ )  - yyo sinh( y ~ ) ) ]  

I3 = eAzT(x + A l x )  

1, = eAIT(x  + A 2 x )  

A1 =f(Yo-Y) 

2 - 2(Yo + Y) A -1 
where 

I5 = e Y o r (  x 2  + x 2  + yoxi) 

and, indeed, they verify 

II = f( I :  - I:) 

I2 =+(I :+ I:) 
Is = 1314. 

The relations (20) a re  due to the obvious fact of having too many constants of 
motion for a mechanical system with only one degree of freedom. Then, we can 
generate the solutions with only two of those constants; say I3  and I, (Gettys er a1 
1981). Notice that time translation is not a symmetry of the action and then the usual 
energy is not conserved. Instead we hav? a conservation law for the pseudoenergy 
given by the G5-generator and the I5 c o x t a n t  of motion. 

(b)  If y = 0, we also have five generators leaving the action invariant. 
They are  C,, C2, C3, C, and Cs in (12) arid they close under commutation rules 

given by (13). The correspondent conserved quantities are 

J1 =eY0‘(x2+x2+yOxx) J 2 -  -eyoT/2(1+1 2YO x 1 
J3 = e yo”2[  T (  X + f  yo^) - X ]  

J4 = e 

J5 = eY0‘[7( x 2  + x 2  + yoxx) -fyox2 - xx]. 

r2( X 2  + x 2  + yoxx) + X2( 1 - YO 7) - h X T ]  

In addition, if yo = 2, as is the case, we obtain the following relations 

J~ = J :  J~ = J :  J5 = J2 53, 

The condition yo = 2 is only necessary for the constants of motion but not for the  
Lie algebra. This suggests a dilatational invariance, in the critical case, under arbitrary 
reparametrisation of yo. 

Since we d o  not have invariance under time translation for the action either in (a) 
or  (b) we are  tempted to suggest that, in the quantum domain, the physical operators 
should only be the ones found in this section. The reason is obviously that classical 
trajectories have n o  meaning in quantum mechanics but the action is crucial for 
calculating the Feynman Green function. The  symmetries of the action a re  much more 
important in quantum mechanics than the symmetries of the equations of motion. This 
line of reasoning is being pursued now in a wide class of models t o  be reported elsewhere. 

5. Contact transformations 

Recently, we have witnessed a revival in the interest in contact transformation for 
differential equations of various kinds, which were first developed by Lie (1894) and, 
later on, the technique was made more transparent by Campbell (1903). These 
transformations were applied to  kinematics in special relativity by the author (Boya 
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and Cerver6 1975a, b, Cerver6 1977a, b). In this section we shall treat the case under 
consideration by using the well known Lie techniques applied to find the group of 
contact transformations which leaves invariant the equation (6). The contact group 
may be of interest mainly because of the field-theoretical conjecture which says that all 
complete integrable systems have an associated infinite parameter Lie contact group. 
The contact group for the harmonic oscillator has already been found (Schwarz 1983) 
and turns out to be an infinite parameter Lie group. We shall follow the steps of the 
Schwarz paper with differences in the final form of the characteristic function due to 
the fact that we have benefited from a slightly more advantageous choice of the 
characteristic curves. 

Let S,  be an infinitesimal contact transformation: 

(23) 

where p = R; q = 1 and W is the characteristic generating function. In our first (over- 
(under-) damped) case 

Sc(q + YOP + x) = 0 (24) 

which yields a partial differential equation for W of the form 

a2w a2w a2w a2w a2 w - + p 2 7 +  (yap+ x)2--y+2p--2(YoP+x) ---& 
ax a7 aT2 ax aP 

a2 w aw a W  aW -2( yop + x)p- + w - p - - x - + Yo - = 0. 
ax ap ap ax a7 

The characteristic curves of this hyperbolic-type equation are 

U =eA2l'(p+A1x) A 1  = $ ( Y o -  Y )  

U = eA2'( p+ A 2 x )  A 2  = tc Yo + Y 1 
where 

Then, using new coordinates: (U, U, T ) ,  we find upon substitution in (25): 

a2 w/aT2+ ( A ~  +h2)a w / ~ T +  w = o 

W = A,(  U, u)e-'i' + A2(u, u)e-A2r 

(27) 

(28) 

with A I  and A2 arbitrary functions of U and U. Therefore W depends upon arbitrary 
functions and the contact Lie group has an infinite number of parameters. From (28) 
one can obtain the general form of S,  using (23). This gives 

whose general solution is: 
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- A ,  exp(-A17)-A2exp(-A27) 

A I A l  exp(-A17)+A2A2 exp(-A2.r) 

For specific forms of A1 and A2 we can reobtain the point-Lie group already analysed 

G, G2 G, G4 G5 G6 G, G8 

in § 2. These choices are 

Turning to the second (critical) case, we find the following set of characteristic curves 

(31) 
The change to new coordinates (U, U, 7) yields a characteristic function of the form 

W=(A,(u,  v)+7A2(u, v))e-Ycjr/2 (32) 

U = e Y o 7 / 2  ( P  + b o x )  U = eyoT/2[7( p + i y o x )  - X I .  

and a general infinitesimal contact generator Sc: 

- ( A l  + 7 A 2 )  e-’(JT/’ -+ [ ~ y o ( A l + ~ A 2 ) - A 2 ] e - Y ~ ~ r ’ 2  la: [ 

Also, for specific forms of A 1  and A2 we reobtain the point-Lie group already 
analysed in § 3. 

Cl c2 c3 c4 c5 C6 c7 C8 

6. Two realisations of SL(3, R )  

The infinitesimal generators (8), with commutation rules (lo)-(  1 l ) ,  which correspond 
to the y # 0 case, and the generators (12), with commutation rules (13)-( 14), for the 
y = 0 case, represent two different, but not unrelated, realisations of SL(3, R ) .  It is 
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the purpose of this section to elucidate such a relationship between these two different 
realisations. Naively, we would expect a sort of group contraction (Wigner and Inonu 
1953, 1954) to work in the y + 0 limit. This cannot be the case since both Lie algebras 
have the same structure; a fact which contradicts the main properties of the group 
contraction. Therefore a more careful analysis of the y + 0 limit needs to be carried 
out. To this end, we expand the generators G of (8) in powers of y and keeping the 
leading terms in y-'  and y, we obtain 

Inspection of (35) shows that the generators G2 and G3 contain more than one 
term in the expansion and also the generators G2 and GS contain repeated terms. 
These features act together in such a way that if we naively drop terms in y with 
respect to those in (l/-y) (for y + 0), the second term in G2 is lost. This is not, however, 
the case if we first take linear combinations in the form 

and one can take now the limit y +  0 without losing the above mentioned generator. 
We can also observe that this procedure cannot be made to work for the second term 
in G3 which is unique in the expansion. Thus, this is a spurious generator which can 
be dropped with respect to the first term in G3. Now, we see that the so-called 'formal 
equivalence' (15)  has an origin deeply enrooted in the limiting procedure y + 0. 

There is another (and perhaps more transparent) way to understand both the 
'formal equivalence' (15)  and the limiting procedure relating the two different 
SL(3, R)-realisations ((8) and (12)). It is based on the observation that, even for y f 0,  

G, exist and are perfectly good generators for the invariance algebra of the non-critical 
oscillator; they are merely linear combinations of the original G's. Now, using the 
commutation relations (lo)-( 11) one can easily prove that these operators satisfy 
exactly the same commutation relations as C5, C1, C,, C2,  C,, C,, C, and C7 respectively 
(see (13)-(14)). This can be done without taking any particular limit for y. Further- 
more, they give precisely the C-operators in the y + 0 limit, as can easily be seen from 
our expansion (35). 

We would like to end with a remark on the structure of two interesting subgroups 
of the G (or C )  group. Firstly, we make the observation that as opposed to the 
classical case in which the equations of motions (and trajectoria) are fundamental, the 
group leaving the action invariant is what really matters in the quantum theory. Thus, 
the important group in the quantum domain would be {Gl,  G 2 ,  G3, G, and G5} or 
{ C , ,  C2 ,  C3, C, and C,) by means of the equivalence (15). Notice that there is not a 

the operators G1, (y/4iHG5+ G2), ( i /y)(G5- G2), (y/2i)G3, G4, G6, (2i/y)G7 and 
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true ‘Hamiltonian’ here; rather we have a ‘pseudo-Hamiltonian’ generator G5 (or C,) 

‘ H ’ =  (a/aT-$yoxa/ax). (37) 

If we then use group theory as a guidance for the right choice of physical observables 
(rather than use for instance the ambiguous ‘correspondence principle’), we should 
choose this generator as a quantum operator instead of the usual time translation. We 
have found similar situations in other field-theoretical systems which will be reported 
elsewhere, but we would like to point out that even in simple mechanical systems, 
such as the one analysed here, a similar situation arises which suggests that perhaps 
the problem of choosing physical operators in quantum mechanics should be completely 
rethought using invariant-action generators. 

Another interesting remark is the one related to the spurious generator appearing 
in the expansions of G3 

E = (1 e-Yor/272a/ax}. (38)’ 

This generator closes a Lie algebra with some of the elements of the C-group. 
More specifically 

[C,, C,l= 0 [CI, C3I=C2 [C,, G I  = 2c1 [Cl, C6l = 0 

IC,, C3l = 0 [C2> C5l = c2 [C,, C6l = c2 rc3, C5l = -c, (39) 

[c3, c6i = c3 [c5, c6] = 0 

and also 

[E,  C,l= -c, [ E  C,l= [E, C3l= 0 [E,  Cs]=-3E [E,  C,] = E. 

Thus, we have the interesting group {C,,  C2,  C3, Cs, C,, E }  as well as the 
invariant-action subgroup {Cl, C2, C,, C,, C5}. The structure of these Lie algebras 
is now being analysed and their physical properties will be the subject of a forthcoming 
publication. 
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